Designing optimized ternary catalytic alloy electrode for efficiency improvement of semiconductor gas sensors using a machine learning approach
Catalytic noble metal (s) or its alloy (s) has long been used as the electrode material to enhance the sensing performance of the semiconducting oxide based gas sensors. In the present paper, design of optimized ternary metal alloy electrode, while the database is in pure or binary alloy composition...
Gespeichert in:
Veröffentlicht in: | Decision Making. Applications in Management and Engineering (Online) 2021-10, Vol.4 (2), p.126-139 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catalytic noble metal (s) or its alloy (s) has long been used as the electrode material to enhance the sensing performance of the semiconducting oxide based gas sensors. In the present paper, design of optimized ternary metal alloy electrode, while the database is in pure or binary alloy compositions, using a machine learning methodology is reported for detection of CH4 gas as a test case. Pure noble metals or their binary alloys as the electrode on the semiconducting ZnO sensing layer were investigated by the earlier researchers to enhance the sensitivity towards CH4. Based on those research findings, an artificial neural network (ANN) models were developed considering the three main features of the gas sensor devices, viz. response magnitude, response time and recovery time as a function of ZnO particle size and the composition of the catalytic alloy. A novel methodology was introduced by using ANN models considered for optimized ternary alloy with enriched presentation through the multi-objective genetic algorithm (GA) wherever the generated pareto front was used. The prescriptive data analytics methodology seems to offer more or less convinced evidences for future experimental studies. |
---|---|
ISSN: | 2560-6018 2620-0104 |
DOI: | 10.31181/dmame210402126g |