A study on the influence of ignition energy on ignition delay time and laminar burning velocity of lean methane/air mixture in a constant volume combustion chamber

This study presents the effect of ignition energy (Eig) on ignition delay time (tdelay) and uncertainty of laminar burning velocity (Su0) measurement of lean methane/air mixture in a constant volume combustion chamber. The mixture at an equivalence ratio of 0.6 is ignited using a pair of electrodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tạp chí Khoa học và Công nghe 2021-12, p.1-4
1. Verfasser: Nguyen, Nguyen Minh Tien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the effect of ignition energy (Eig) on ignition delay time (tdelay) and uncertainty of laminar burning velocity (Su0) measurement of lean methane/air mixture in a constant volume combustion chamber. The mixture at an equivalence ratio of 0.6 is ignited using a pair of electrodes at the 2-mm spark gap. Eig is measured by integrating the product of voltage V(t) and current I(t) signals during a discharge period. The in-chamber pressure profiles are analyzed using the pressure-rise method to obtain tdelay and Su0. Su0 approximates 8.0 cm/s. Furthermore, the increasing Eig could shorten tdelay, leading to a faster combustion process. However, when Eig is greater than a critical value, called minimum reliable ignition energy (MRIE), the additional elevating Eig has the marginal effect on tdelay and Su0. The existence of MRIE supports to optimize the ignition systems and partly explains why extreme-high Eig>> MRIE has less contribution to engine performance.
ISSN:1859-1531
DOI:10.31130/ud-jst2021-009E