Toxicology of quinone-thioethers

Abstract Cytotoxicity associated with exposure to quinones has generally been attributed to either redox cycling, and the subsequent development of "oxidative stress" and/or to their interaction with cellular nucleophiles, such as protein and non-protein sulfhydryls. Glutathione (GSH) is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Critical reviews in toxicology 1992, Vol.22 (5-6), p.243-270
1. Verfasser: Monks, T.J. (The University of Texas at Austin, Austin, TX)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Cytotoxicity associated with exposure to quinones has generally been attributed to either redox cycling, and the subsequent development of "oxidative stress" and/or to their interaction with cellular nucleophiles, such as protein and non-protein sulfhydryls. Glutathione (GSH) is the major non-protein sulfhydryl present in cells, and conjugation of potentially toxic electrophiles with GSH is usually associated with detoxication and excretion. However, this review discusses the biological (re)activity of quinone-thioethers. For example, quinone-thioethers are (1) capable of redox cycling (2) substrates for, and inhibitors of, a variety of enzymes (3) methemoglobinemic (4) potent nephrotoxicants (5) DNA reactive and (6) may contribute to quinone-mediated carcinogenicity and neurotoxicity. The ubiquitous nature of quinones, and the high intracellular concentrations of GSH, ensures that cells and tissues will be exposed to quinone-thioethers. The toxicological importance of quinone-thioethers in quinone-mediated toxicities therefore deserves further attention.
ISSN:1040-8444
1547-6898
DOI:10.3109/10408449209146309