Prediction of the Composition of the Wide Light Hydrocarbon Fraction by Methods of Machine Learning in Pipeline Transportation

The approach of using machine learning methods for automated prediction of the component composition of the wide light hydrocarbon fraction in pipeline transportation is studied. Based on the CatBoost library network, a machine learning model allowing one to determine the component composition of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2022-02, Vol.58 (1), p.85-90
Hauptverfasser: Tereshchenko, S. N., Osipov, A. L., Moiseeva, E. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The approach of using machine learning methods for automated prediction of the component composition of the wide light hydrocarbon fraction in pipeline transportation is studied. Based on the CatBoost library network, a machine learning model allowing one to determine the component composition of the mixture with an error of 2.263 in the MAPE metric is developed.
ISSN:8756-6990
1934-7944
DOI:10.3103/S8756699022010125