Prediction of the Composition of the Wide Light Hydrocarbon Fraction by Methods of Machine Learning in Pipeline Transportation
The approach of using machine learning methods for automated prediction of the component composition of the wide light hydrocarbon fraction in pipeline transportation is studied. Based on the CatBoost library network, a machine learning model allowing one to determine the component composition of th...
Gespeichert in:
Veröffentlicht in: | Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2022-02, Vol.58 (1), p.85-90 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The approach of using machine learning methods for automated prediction of the component composition of the wide light hydrocarbon fraction in pipeline transportation is studied. Based on the CatBoost library network, a machine learning model allowing one to determine the component composition of the mixture with an error of 2.263 in the MAPE metric is developed. |
---|---|
ISSN: | 8756-6990 1934-7944 |
DOI: | 10.3103/S8756699022010125 |