Initial segments of computable linear orders with computable natural relations
We study the algorithmic complexity of natural relations on initial segments of computable linear orders. We prove that there exists a computable linear order with computable density relation such that its Π 1 0 -initial segment has no computable presentation with a computable density relation. We a...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2016-06, Vol.60 (6), p.12-20 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the algorithmic complexity of natural relations on initial segments of computable linear orders. We prove that there exists a computable linear order with computable density relation such that its Π
1
0
-initial segment has no computable presentation with a computable density relation. We also prove that the same holds for a right limit and a left limit relations. |
---|---|
ISSN: | 1066-369X 1934-810X |
DOI: | 10.3103/S1066369X16060025 |