Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth
We consider the convolution operator in spaces of holomorphic functions, defined in convex subdomains of the complex plane, with polynomial growth at a boundary. We prove that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inve...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2015, Vol.59 (1), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the convolution operator in spaces of holomorphic functions, defined in convex subdomains of the complex plane, with polynomial growth at a boundary. We prove that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inverse one. |
---|---|
ISSN: | 1066-369X 1934-810X |
DOI: | 10.3103/S1066369X15010016 |