Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth

We consider the convolution operator in spaces of holomorphic functions, defined in convex subdomains of the complex plane, with polynomial growth at a boundary. We prove that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2015, Vol.59 (1), p.1-10
Hauptverfasser: Abanin, A. V., Khoi, Le Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the convolution operator in spaces of holomorphic functions, defined in convex subdomains of the complex plane, with polynomial growth at a boundary. We prove that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inverse one.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X15010016