Finite-dimensional homogeneously simple algebras of associative type

In this paper, we describe finite-dimensional homogeneously simple algebras of associative type whose 1-component is a full matrix algebra. In addition, we prove that a finite-dimensional division ring of associative type over an algebraically closed field is isomorphic to a group algebra.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2010-09, Vol.54 (9), p.30-35
1. Verfasser: Koreshkov, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we describe finite-dimensional homogeneously simple algebras of associative type whose 1-component is a full matrix algebra. In addition, we prove that a finite-dimensional division ring of associative type over an algebraically closed field is isomorphic to a group algebra.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X10090033