The absolute convergence of the Fourier-Haar series for two-dimensional functions

It is well-known that if an one-dimensional function is continuously differentiable on [0, 1], then its Fourier-Haar series converges absolutely. On the other hand, if a function of two variables has continuous partial derivatives f x ′ and f y ′ on T 2 , then its Fourier series does not necessarily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2008-05, Vol.52 (5), p.9-19
Hauptverfasser: Gogoladze, L. D., Tsagareishvili, V. Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well-known that if an one-dimensional function is continuously differentiable on [0, 1], then its Fourier-Haar series converges absolutely. On the other hand, if a function of two variables has continuous partial derivatives f x ′ and f y ′ on T 2 , then its Fourier series does not necessarily absolutely converge with respect to a multiple Haar system (see [1]). In this paper we state sufficient conditions for the absolute convergence of the Fourier-Haar series for two-dimensional continuously differentiable functions.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X08050022