On similarity homogeneous locally compact spaces with intrinsic metric

In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2008-04, Vol.52 (4), p.24-37
1. Verfasser: Gundyrev, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 4
container_start_page 24
container_title Russian mathematics
container_volume 52
creator Gundyrev, I. A.
description In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is δ -homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.
doi_str_mv 10.3103/S1066369X0804004X
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X0804004X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X0804004X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFu-wGr-bZocpVgVCj2o0NsSp5M2ZXdTki2y396UehO8zDx48xsej5B7zh4kZ_LxnTOtpbZrZphiTK0vyIRbqSrD2fqy6GJXJ_-a3OS8Z6zWQukJWax6mkMXWpfCMNJd7OIWe4zHTNsIrm1HCrE7OBhoLhMz_Q7DjoZ-SKHPAWiHRcEtufKuzXj3u6fkc_H8MX-tlquXt_nTsgLBzVBprw1-CfQb9MYL6ZlDURvk1gLDGcyslwr0xglTW1DSO1FLbmbOKiU0gJwSfv4LKeac0DeHFDqXxoaz5lRE86eIwogzk8ttv8XU7OMx9SXmP9AP37NiAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gundyrev, I. A.</creator><creatorcontrib>Gundyrev, I. A.</creatorcontrib><description>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is δ -homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X0804004X</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2008-04, Vol.52 (4), p.24-37</ispartof><rights>Allerton Press, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</citedby><cites>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X0804004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X0804004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gundyrev, I. A.</creatorcontrib><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is δ -homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFu-wGr-bZocpVgVCj2o0NsSp5M2ZXdTki2y396UehO8zDx48xsej5B7zh4kZ_LxnTOtpbZrZphiTK0vyIRbqSrD2fqy6GJXJ_-a3OS8Z6zWQukJWax6mkMXWpfCMNJd7OIWe4zHTNsIrm1HCrE7OBhoLhMz_Q7DjoZ-SKHPAWiHRcEtufKuzXj3u6fkc_H8MX-tlquXt_nTsgLBzVBprw1-CfQb9MYL6ZlDURvk1gLDGcyslwr0xglTW1DSO1FLbmbOKiU0gJwSfv4LKeac0DeHFDqXxoaz5lRE86eIwogzk8ttv8XU7OMx9SXmP9AP37NiAw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Gundyrev, I. A.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><author>Gundyrev, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gundyrev, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gundyrev, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On similarity homogeneous locally compact spaces with intrinsic metric</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>52</volume><issue>4</issue><spage>24</spage><epage>37</epage><pages>24-37</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is δ -homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X0804004X</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2008-04, Vol.52 (4), p.24-37
issn 1066-369X
1934-810X
language eng
recordid cdi_crossref_primary_10_3103_S1066369X0804004X
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title On similarity homogeneous locally compact spaces with intrinsic metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20similarity%20homogeneous%20locally%20compact%20spaces%20with%20intrinsic%20metric&rft.jtitle=Russian%20mathematics&rft.au=Gundyrev,%20I.%20A.&rft.date=2008-04-01&rft.volume=52&rft.issue=4&rft.spage=24&rft.epage=37&rft.pages=24-37&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X0804004X&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X0804004X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true