On similarity homogeneous locally compact spaces with intrinsic metric
In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity ho...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2008-04, Vol.52 (4), p.24-37 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 4 |
container_start_page | 24 |
container_title | Russian mathematics |
container_volume | 52 |
creator | Gundyrev, I. A. |
description | In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is
δ
-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces. |
doi_str_mv | 10.3103/S1066369X0804004X |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X0804004X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X0804004X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFu-wGr-bZocpVgVCj2o0NsSp5M2ZXdTki2y396UehO8zDx48xsej5B7zh4kZ_LxnTOtpbZrZphiTK0vyIRbqSrD2fqy6GJXJ_-a3OS8Z6zWQukJWax6mkMXWpfCMNJd7OIWe4zHTNsIrm1HCrE7OBhoLhMz_Q7DjoZ-SKHPAWiHRcEtufKuzXj3u6fkc_H8MX-tlquXt_nTsgLBzVBprw1-CfQb9MYL6ZlDURvk1gLDGcyslwr0xglTW1DSO1FLbmbOKiU0gJwSfv4LKeac0DeHFDqXxoaz5lRE86eIwogzk8ttv8XU7OMx9SXmP9AP37NiAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gundyrev, I. A.</creator><creatorcontrib>Gundyrev, I. A.</creatorcontrib><description>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is
δ
-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X0804004X</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2008-04, Vol.52 (4), p.24-37</ispartof><rights>Allerton Press, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</citedby><cites>FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X0804004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X0804004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gundyrev, I. A.</creatorcontrib><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is
δ
-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFu-wGr-bZocpVgVCj2o0NsSp5M2ZXdTki2y396UehO8zDx48xsej5B7zh4kZ_LxnTOtpbZrZphiTK0vyIRbqSrD2fqy6GJXJ_-a3OS8Z6zWQukJWax6mkMXWpfCMNJd7OIWe4zHTNsIrm1HCrE7OBhoLhMz_Q7DjoZ-SKHPAWiHRcEtufKuzXj3u6fkc_H8MX-tlquXt_nTsgLBzVBprw1-CfQb9MYL6ZlDURvk1gLDGcyslwr0xglTW1DSO1FLbmbOKiU0gJwSfv4LKeac0DeHFDqXxoaz5lRE86eIwogzk8ttv8XU7OMx9SXmP9AP37NiAw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Gundyrev, I. A.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>On similarity homogeneous locally compact spaces with intrinsic metric</title><author>Gundyrev, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6f68eb2efdef8f23f0ae258e199c0e7c79f34c6da2859c43fa253187a94426cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gundyrev, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gundyrev, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On similarity homogeneous locally compact spaces with intrinsic metric</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>52</volume><issue>4</issue><spage>24</spage><epage>37</epage><pages>24-37</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is
δ
-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X0804004X</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2008-04, Vol.52 (4), p.24-37 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_crossref_primary_10_3103_S1066369X0804004X |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | On similarity homogeneous locally compact spaces with intrinsic metric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20similarity%20homogeneous%20locally%20compact%20spaces%20with%20intrinsic%20metric&rft.jtitle=Russian%20mathematics&rft.au=Gundyrev,%20I.%20A.&rft.date=2008-04-01&rft.volume=52&rft.issue=4&rft.spage=24&rft.epage=37&rft.pages=24-37&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X0804004X&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X0804004X%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |