On similarity homogeneous locally compact spaces with intrinsic metric

In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2008-04, Vol.52 (4), p.24-37
1. Verfasser: Gundyrev, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i.e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is δ -homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X0804004X