Climbing the Hill with ILP to Grow Patterns in Fuzzy Tensors

Fuzzy tensors encode to what extent n -ary predicates are satisfied. The disjunctive box cluster model is a regression model where sub-tensors are explanatory variables for the values in the fuzzy tensor. In this article, locally optimal patterns for that model, with high areas times squared densiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems 2020-01, Vol.13 (1), p.1036-1047
Hauptverfasser: Maciel, Lucas, Alves, Jônatas, dos Santos, Vinicius Fernandes, Cerf, Loïc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fuzzy tensors encode to what extent n -ary predicates are satisfied. The disjunctive box cluster model is a regression model where sub-tensors are explanatory variables for the values in the fuzzy tensor. In this article, locally optimal patterns for that model, with high areas times squared densities, are grown by hill-climbing from fragments of them. A forward selection then chooses among the discovered patterns a non-redundant subset that fits, but does not overfit, the tensor.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.2991/ijcis.d.200715.002