Climbing the Hill with ILP to Grow Patterns in Fuzzy Tensors
Fuzzy tensors encode to what extent n -ary predicates are satisfied. The disjunctive box cluster model is a regression model where sub-tensors are explanatory variables for the values in the fuzzy tensor. In this article, locally optimal patterns for that model, with high areas times squared densiti...
Gespeichert in:
Veröffentlicht in: | International journal of computational intelligence systems 2020-01, Vol.13 (1), p.1036-1047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fuzzy tensors encode to what extent
n
-ary predicates are satisfied. The
disjunctive box cluster model
is a regression model where sub-tensors are explanatory variables for the values in the fuzzy tensor. In this article, locally optimal patterns for that model, with high areas times squared densities, are grown by hill-climbing from fragments of them. A
forward selection
then chooses among the discovered patterns a non-redundant subset that fits, but does not overfit, the tensor. |
---|---|
ISSN: | 1875-6891 1875-6883 1875-6883 |
DOI: | 10.2991/ijcis.d.200715.002 |