Gelfand-Zetlin basis, Whittaker Vectors and a Bosonic Formula for the ${\mathfrak{sl}}_{n+1}$ Principal Subspace

We derive a bosonic formula for the character of the principal space in the level $k$ vacuum module for $\widehat{\mathfrak{sl}}_{n+1}$, starting from a known fermionic formula for it. In our previous work, the latter was written as a sum consisting of Shapovalov scalar products of the Whittaker vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 2011-06, Vol.47 (2), p.535-551
Hauptverfasser: Feigin, Boris, Jimbo, Michio, Miwa, Tetsuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a bosonic formula for the character of the principal space in the level $k$ vacuum module for $\widehat{\mathfrak{sl}}_{n+1}$, starting from a known fermionic formula for it. In our previous work, the latter was written as a sum consisting of Shapovalov scalar products of the Whittaker vectors for $U_{v^{\pm1}}(\mathfrak{gl}_{n+1})$. In this paper we compute these scalar products in the bosonic form, using the decomposition of the Whittaker vectors in the Gelfand-Zetlin basis. We show further that the bosonic formula obtained in this way is the quasi-classical decomposition of the fermionic formula. %for $U_{v^{\pm1}}(\mathfrak{gl}_{n+1})$ % modules computing it %by using the decomposition %of the Whittaker vectors in the Gelfand-Zetlin basis. %We show that the bosonic formula obtained in this way %is the quasi-classical decomposition of the fermionic formula.
ISSN:0034-5318
1663-4926
DOI:10.2977/PRIMS/42