The Unipotent Albanese Map and Selmer Varieties for Curves
We study the unipotent Albanese map that associates the torsor of paths for p-adic fundamental groups to a point on a hyperbolic curve. It is shown that the map is very transcendental in nature, while standard conjectures about the structure of mixed motives provide control over the image of the map...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2009-03, Vol.45 (1), p.89-133 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the unipotent Albanese map that associates the torsor of paths for p-adic fundamental groups to a point on a hyperbolic curve. It is shown that the map is very transcendental in nature, while standard conjectures about the structure of mixed motives provide control over the image of the map. As a consequence, conjectures of ‘Birch and Swinnerton-Dyer type’ are connected to finiteness theorems of Faltings–Siegel type. |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.2977/prims/1234361156 |