Holonomy Groups of Stable Vector Bundles
We define the notion of holonomy group for a stable vector bundle F on a variety in terms of the Narasimhan–Seshadri unitary representation of its restriction to curves. Next we relate the holonomy group to the minimal structure group and to the decomposition of tensor powers of F. Finally we illustr...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2008-05, Vol.44 (2), p.183-211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the notion of holonomy group for a stable vector bundle F on a variety in terms of the Narasimhan–Seshadri unitary representation of its restriction to curves. Next we relate the holonomy group to the minimal structure group and to the decomposition of tensor powers of F. Finally we illustrate the principle that either the holonomy is large or there is a clear geometric reason why it should be small. |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.2977/prims/1210167326 |