Holonomy Groups of Stable Vector Bundles

We define the notion of holonomy group for a stable vector bundle F on a variety in terms of the Narasimhan–Seshadri unitary representation of its restriction to curves. Next we relate the holonomy group to the minimal structure group and to the decomposition of tensor powers of F. Finally we illustr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 2008-05, Vol.44 (2), p.183-211
Hauptverfasser: Balaji, V, Kollár, János
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the notion of holonomy group for a stable vector bundle F on a variety in terms of the Narasimhan–Seshadri unitary representation of its restriction to curves. Next we relate the holonomy group to the minimal structure group and to the decomposition of tensor powers of F. Finally we illustrate the principle that either the holonomy is large or there is a clear geometric reason why it should be small.
ISSN:0034-5318
1663-4926
DOI:10.2977/prims/1210167326