Jensen Measures and Maximal Functions of Uniform Algebras
Our purpose here is to seek on an arbitrary uniform algebra the class of representing measures which admit a certain maximal function for each log-envelope function defined on the maximal ideal space of the algebra. These maximal functions can be considered as a proper generalization of those that a...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 1986, Vol.22 (1), p.57-80 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our purpose here is to seek on an arbitrary uniform algebra the class of representing measures which admit a certain maximal function for each log-envelope function defined on the maximal ideal space of the algebra. These maximal functions can be considered as a proper generalization of those that are associated with two-dimensional Brownian motion in the concrete algebras R(K). Most of the results already obtained from the probabilistic approach, e. g. Burkholder-Gundy-Silverstein inequalities, a weaker form of Fefferman's duality theorem etc., are valid for our maximal functions. The remarkable feature of our class of representing measures is that it is stable under the weak-star limit and the convex combination. In the concrete algebras R(K), if the harmonic measure and the Keldysh measure for a given point of K are different, then our class of representing measures that are supported on the topological boundary of K forms an infinite-dimensional weak-star compact convex set in the dual of C(K). |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.2977/prims/1195178372 |