Some Limit Transitions between BC Type Orthogonal Polynomials Interpreted on Quantum Complex Grassmannians
The quantum complex Grassmannian Uq/Kq of rank l is the quotient of the quantum unitary group Uq = Uq(n) by the quantum subgroup Kq = Uq(n–l) x Uq(l). We show that (Uq, Kq) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. Kq-biinvariant matrix coefficients of finite-dimen...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 1999, Vol.35 (3), p.451-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum complex Grassmannian Uq/Kq of rank l is the quotient of the quantum unitary group Uq = Uq(n) by the quantum subgroup Kq = Uq(n–l) x Uq(l). We show that (Uq, Kq) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. Kq-biinvariant matrix coefficients of finite-dimensional irreducible representations of Uq, as multivariable little q-Jacobi polynomials depending on one discrete parameter. Another type of biinvariant matrix coefficients is identified as multivariable big q-Jacobi polynomials. The proof is based on earlier results by Noumi, Sugitani and the first author relating Koornwinder polynomials to a one-parameter family of quantum complex Grassmannians, and certain limit transitions from Koornwinder polynomials to multivariable big and little q-Jacobi polynomials studied by Koornwinder and the second author. |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.2977/prims/1195143610 |