Some Limit Transitions between BC Type Orthogonal Polynomials Interpreted on Quantum Complex Grassmannians

The quantum complex Grassmannian Uq/Kq of rank l is the quotient of the quantum unitary group Uq = Uq(n) by the quantum subgroup Kq = Uq(n–l) x Uq(l). We show that (Uq, Kq) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. Kq-biinvariant matrix coefficients of finite-dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 1999, Vol.35 (3), p.451-500
Hauptverfasser: Dijkhuizen, Mathijs, Stokman, Jasper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum complex Grassmannian Uq/Kq of rank l is the quotient of the quantum unitary group Uq = Uq(n) by the quantum subgroup Kq = Uq(n–l) x Uq(l). We show that (Uq, Kq) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. Kq-biinvariant matrix coefficients of finite-dimensional irreducible representations of Uq, as multivariable little q-Jacobi polynomials depending on one discrete parameter. Another type of biinvariant matrix coefficients is identified as multivariable big q-Jacobi polynomials. The proof is based on earlier results by Noumi, Sugitani and the first author relating Koornwinder polynomials to a one-parameter family of quantum complex Grassmannians, and certain limit transitions from Koornwinder polynomials to multivariable big and little q-Jacobi polynomials studied by Koornwinder and the second author.
ISSN:0034-5318
1663-4926
DOI:10.2977/prims/1195143610