Intuitionistic Fuzzy Z-Contractions and Common Fixed Points with Applications
In the context of $b$-metric spaces, this paper introduces two concepts: admissible hybrid intuitionistic fuzzy $\mathcal{Z}$-contractions and pairwise admissible hybrid intuitionistic fuzzy $\mathcal{Z}$-contractions and establishes criteria for intuitionistic fuzzy fixed points under such contract...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2024-10, Vol.17 (4), p.3304-3335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of $b$-metric spaces, this paper introduces two concepts: admissible hybrid intuitionistic fuzzy $\mathcal{Z}$-contractions and pairwise admissible hybrid intuitionistic fuzzy $\mathcal{Z}$-contractions and establishes criteria for intuitionistic fuzzy fixed points under such contractions. It is demonstrated that a pair of set-valued maps possesses a common fixed point. Various illustrative examples are provided to validate these results. Moreover, the significant implications of our main theorem are explored and analyzed across different types of simulation functions. Furthermore, we derive several fixed point results in the context of partially ordered b-metric spaces, offering insights from an application-oriented perspective. These outcomes extend and generalize several prior results documented in the literature. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v17i4.5431 |