The Connections of Strongest Fuzzy Γ-ideals on Ternary Γ-semigroups
The fuzzy relation $R_\mu$ on $\mu$, where $\mu$ is a fuzzy set of a set $X$, is called a strongest fuzzy relation on $X$ if $R_\mu(x,y)=\min\{\mu(x),\mu(y)\}$, for all $x,y\in X$. The notion of strongest fuzzy relations will be applied in our investigation of ternary $\Gamma$-semigroups. In order t...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2024-07, Vol.17 (3), p.1417-1428 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fuzzy relation $R_\mu$ on $\mu$, where $\mu$ is a fuzzy set of a set $X$, is called a strongest fuzzy relation on $X$ if $R_\mu(x,y)=\min\{\mu(x),\mu(y)\}$, for all $x,y\in X$. The notion of strongest fuzzy relations will be applied in our investigation of ternary $\Gamma$-semigroups. In order to achieve this, we will define the concepts of strongest fuzzy ternary $\Gamma$-subsemigroups, strongest fuzzy $\Gamma$-ideals (resp. left, right, and lateral), and strongest fuzzy bi-$\Gamma$-ideals on ternary $\Gamma$-semigroups. Then, we study the connections and characterizations of these concepts in ternary $\Gamma$-semigroups. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v17i3.5309 |