The Connections of Strongest Fuzzy Γ-ideals on Ternary Γ-semigroups

The fuzzy relation $R_\mu$ on $\mu$, where $\mu$ is a fuzzy set of a set $X$, is called a strongest fuzzy relation on $X$ if $R_\mu(x,y)=\min\{\mu(x),\mu(y)\}$, for all $x,y\in X$. The notion of strongest fuzzy relations will be applied in our investigation of ternary $\Gamma$-semigroups. In order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pure and applied mathematics 2024-07, Vol.17 (3), p.1417-1428
Hauptverfasser: Nakkhasen, Warud, Yangnok, Onnalin, Chaidet, Kewarin, Jantanan, Wichayaporn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fuzzy relation $R_\mu$ on $\mu$, where $\mu$ is a fuzzy set of a set $X$, is called a strongest fuzzy relation on $X$ if $R_\mu(x,y)=\min\{\mu(x),\mu(y)\}$, for all $x,y\in X$. The notion of strongest fuzzy relations will be applied in our investigation of ternary $\Gamma$-semigroups. In order to achieve this, we will define the concepts of strongest fuzzy ternary $\Gamma$-subsemigroups, strongest fuzzy $\Gamma$-ideals (resp. left, right, and lateral), and strongest fuzzy bi-$\Gamma$-ideals on ternary $\Gamma$-semigroups. Then, we study the connections and characterizations of these concepts in ternary $\Gamma$-semigroups. 
ISSN:1307-5543
1307-5543
DOI:10.29020/nybg.ejpam.v17i3.5309