On Prime Counting Functions Using Odd $K$-Almost Primes

This work takes an interesting diversion, revealing the extraordinary capacity to determine the precise number of primes in a space tripled over another. Exploring the domain of K-almost prime numbers, this paper provides a clear explanation of the complex idea. In addition to outlining the conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pure and applied mathematics 2024-04, Vol.17 (2), p.1146-1154
Hauptverfasser: Rashid, T., Jaradat, M. M. M., Yolacan, E., Ahmad, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work takes an interesting diversion, revealing the extraordinary capacity to determine the precise number of primes in a space tripled over another. Exploring the domain of K-almost prime numbers, this paper provides a clear explanation of the complex idea. In addition to outlining the conditions under which odd K-almost prime numbers must exist, it presents a novel method for figuring out how often odd numbers are as 2-almost prime, 3-almost prime, 4-almost prime, and so on, up to a specified limit n. The work goes one step further and offers useful advice on how to use these approaches to precisely calculate the prime counting function, π(n). Essentially, it offers a comprehensive exploration of the mathematical fabric, where primes reveal their mysteries in both large and small spaces.
ISSN:1307-5543
1307-5543
DOI:10.29020/nybg.ejpam.v17i2.4961