C-Almost Normality and L-Almost Normality
The main purpose of this paper is to introduce and study new topological properties called C-almost normality and L-almost normality. A space X is called a C-almost normal (resp. L-almost normal) space if there exist an almost normal space Y and a bijective function f : X → Y such that the restricti...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2022-10, Vol.15 (4), p.1760-1782 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main purpose of this paper is to introduce and study new topological properties called C-almost normality and L-almost normality. A space X is called a C-almost normal (resp. L-almost normal) space if there exist an almost normal space Y and a bijective function f : X → Y such that the restriction function f|A : A → f(A) is a homeomorphism for each compact (resp. Lindelöf) subspace A ⊆ X. We investigate these properties and present some examples to illustrate the relationships among them with other kinds of topological properties. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v15i4.4570 |