Restrained 2-Resolving Dominating Sets in the Join, Corona and Lexicographic Product of Two Graphs
Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set for G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. A set S ⊆ V (G) is a restrained 2-resolving d...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2022-07, Vol.15 (3), p.1047-1053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set for G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. A set S ⊆ V (G) is a restrained 2-resolving dominating set in G if S is a 2-resolving dominating set in G and S = V (G) or ⟨V (G)\S⟩ has no isolated vertex. The restrained 2R-domination number of G, denoted by γr2R(G), is the smallest cardinality of a restrained 2-resolving dominating set in G. Any restrained 2-resolving dominating set of cardinality γr2R(G) is referred to as a γr2R-set in G. This study deals with the concept of restrained 2-resolving dominating set of a graph. It characterizes the restrained 2-resolving dominating set in the join, corona and lexicographic product of two graphs and determine the bounds or exact values of the restrained 2-resolving domination number of these graphs. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v15i3.4451 |