McShane Integrability Using Variational Measure
If f : [a, b] → R is McShane integrable on [a, b], then f is McShane integrable on every Lebesgue measurable subset of [a, b]. However, integrability of a real-valued function on [a, b] does not imply McShane integrability on any E ⊆ [a, b]. In this paper, we give a characterization for the McSh...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2020-01, Vol.13 (2), p.303-313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If f : [a, b] → R is McShane integrable on [a, b], then f is McShane integrable on every Lebesgue measurable subset of [a, b]. However, integrability of a real-valued function on [a, b] does not imply McShane integrability on any E ⊆ [a, b]. In this paper, we give a characterization for the McShane integrability of f : [a, b] → R over E ⊆ [a, b] using concept of variational measure. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v13i2.3659 |