Multiplicative (Generalized) Reverse Derivations on Semiprime Ring

Let R be a semiprime ring. A mapping F : R → R (not necessarily additive) is called a multiplicative (generalized) reverse derivation if there exists a map    d : R → R (not necessarily a derivation nor an additive map) such that F(xy) = F(y)x + yd(x) for all x, y є R. In this paper we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pure and applied mathematics 2018-07, Vol.11 (3), p.717-729
Hauptverfasser: Ali, Asma, Bano, Ambreen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a semiprime ring. A mapping F : R → R (not necessarily additive) is called a multiplicative (generalized) reverse derivation if there exists a map    d : R → R (not necessarily a derivation nor an additive map) such that F(xy) = F(y)x + yd(x) for all x, y є R. In this paper we investigate some identities involving multiplicative (generalized) reverse derivation and prove some theorems in which we characterize these mappings.
ISSN:1307-5543
1307-5543
DOI:10.29020/nybg.ejpam.v11i3.3248