Multiplicative (Generalized) Reverse Derivations on Semiprime Ring
Let R be a semiprime ring. A mapping F : R → R (not necessarily additive) is called a multiplicative (generalized) reverse derivation if there exists a map  d : R → R (not necessarily a derivation nor an additive map) such that F(xy) = F(y)x + yd(x) for all x, y є R. In this paper we in...
Gespeichert in:
Veröffentlicht in: | European journal of pure and applied mathematics 2018-07, Vol.11 (3), p.717-729 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a semiprime ring. A mapping F : R → R (not necessarily additive) is called a multiplicative (generalized) reverse derivation if there exists a map  d : R → R (not necessarily a derivation nor an additive map) such that F(xy) = F(y)x + yd(x) for all x, y є R. In this paper we investigate some identities involving multiplicative (generalized) reverse derivation and prove some theorems in which we characterize these mappings. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v11i3.3248 |