Global stability of mutualistic interactions among three species population model with continuous time delay
This paper deals with the study on a mathematical model consisting of mutualistic interactions among three species with continuous time delay. The delay kernels are being convex combinations of suitable nonnegative and normalized functions, the linear chain trick gives an expanded system of ordinary...
Gespeichert in:
Veröffentlicht in: | Malaya journal of matematik 2013-01, Vol.1 (1), p.98-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the study on a mathematical model consisting of mutualistic interactions among three species with continuous time delay. The delay kernels are being convex combinations of suitable nonnegative and normalized functions, the linear chain trick gives an expanded system of ordinary differential equations with the same stability properties as the original integro-differential system. Global stability is discussed by constructing Lyapunov function. It has been shown that equilibrium state of the model is globally stable. Finally, numerical simulations supporting our theoretical results are also included. |
---|---|
ISSN: | 2319-3786 2321-5666 |
DOI: | 10.26637/mjm101/010 |