FINDING PEOPLE WITH EMOTIONAL DISTRESS IN ONLINE SOCIAL MEDIA: A DESIGN COMBINING MACHINE LEARNING AND RULE-BASED CLASSIFICATION

Many people face problems of emotional distress. Early detection of high-risk individuals is the key to prevent suicidal behavior. There is increasing evidence that the Internet and social media provide clues of people's emotional distress. In particular, some people leave messages showing emot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MIS quarterly 2020-06, Vol.44 (2), p.933-955
Hauptverfasser: Chau, Michael, Li, Tim M. H., Wong, Paul W. C., Xu, Jennifer J., Yip, Paul S. F., Chen, Hsinchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many people face problems of emotional distress. Early detection of high-risk individuals is the key to prevent suicidal behavior. There is increasing evidence that the Internet and social media provide clues of people's emotional distress. In particular, some people leave messages showing emotional distress or even suicide notes on the Internet. Identifying emotionally distressed people and examining their posts on the Internet are important steps for health and social work professionals to provide assistance, but the process is very timeconsuming and ineffective if conducted manually using standard search engines. Following the design science approach, we present the design of a system called KAREN, which identifies individuals who blog about their emotional distress in the Chinese language, using a combination of machine learning classification and rulebased classification with rules obtained from experts. A controlled experiment and a user study were conducted to evaluate system performance in searching and analyzing blogs written by people who might be emotionally distressed. The results show that the proposed system achieved better classification performance than the benchmark methods and that professionals perceived the system to be more useful and effective for identifying bloggers with emotional distress than benchmark approaches.
ISSN:0276-7783
2162-9730
DOI:10.25300/MISQ/2020/14110