Digital Rock Physics: computation of hydrodynamic dispersion
Hydrodynamic dispersion is a crucial mechanism for modelling contaminant transport in subsurface engineering and water resources management whose determination remains challenging. We use Digital Rock Physics (DRP) to evaluate the longitudinal dispersion of a sandpack. From a three-dimensional image...
Gespeichert in:
Veröffentlicht in: | Oil & gas science and technology 2021, Vol.76, p.51, Article 51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrodynamic dispersion is a crucial mechanism for modelling contaminant transport in subsurface engineering and water resources management whose determination remains challenging. We use Digital Rock Physics (DRP) to evaluate the longitudinal dispersion of a sandpack. From a three-dimensional image of a porous sample obtained with X-ray microtomography, we use the method of volume averaging to assess the longitudinal dispersion. Our numerical implementation is open-source and relies on a modern scientific platform that allows for large computational domains and High-Performance Computing. We verify the robustness of our model using cases for which reference solutions exist and we show that the longitudinal dispersion of a sandpack scales as a power law of the Peclet number. The assessment methodology is generic and applies to any kind of rock samples. |
---|---|
ISSN: | 1294-4475 1953-8189 |
DOI: | 10.2516/ogst/2021032 |