Tensile Strength Modeling of Limestone Rocks in Sulaymaniyah City, Iraq Using Simple Tests

Tensile strength of rocks is one of the mechanical properties of intact rock that is a significant parameter for designing geotechnical structures includes dam foundations and tunnels. The tensile strength can be determined indirectly using Brazilian indirect test procedure that is mentioned in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polytechnic 2019-12, Vol.9 (2), p.149-155
Hauptverfasser: Mohammed, Diyari A., Alshkane, Younis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tensile strength of rocks is one of the mechanical properties of intact rock that is a significant parameter for designing geotechnical structures includes dam foundations and tunnels. The tensile strength can be determined indirectly using Brazilian indirect test procedure that is mentioned in the International Society for Rock Mechanics suggested methods. The availability of rock samples is needed to perform the Brazilian indirect test so as to determine their tensile strength which is expensive, time-consuming, and cost-effective especially for weak quality rock formations. Therefore, non-destructive methods for predicting the tensile strength of the rock are crucially needed during the poor quality of rock samples. Non-destructive tests can be correlated with indirect tests to predict Brazilian tensile strength (BTS) of rocks such as ultrasonic pulse velocity and Schmidt hammer. These methods are simple and can be easily conducted in the field. This study is focused on the tensile strength of limestone rocks for three main formations of Sulaymaniyah city. The samples were obtained using a standard core barrel. Statistical analysis including minimum, maximum, mean, standard deviation, variance, and coefficient of variance for the results was conducted. Single and multiple correlations between BTS and each of ultrasonic pulse velocity and Schmidt hammer rebound number of limestone rocks were created. Reasonable empirical equations were developed to predict the tensile strength of limestone rocks. In addition, the point load strength index was correlated with BTS. The comparison between proposed equations from this study and equation from the literature was also investigated.
ISSN:2313-5727
2707-7799
DOI:10.25156/ptj.v9n2y2019.pp149-155