Convective and radiative heat transfer in MHD radiant boilers
A combined convection-gas radiation, two-zone flow model is formulated for study of the heat transfer characteristics of MHD radiant boilers. The radiative contributions of carbon dioxide, water vapor, potassium atoms, and slag particles are included in the formulation, and are determined by solving...
Gespeichert in:
Veröffentlicht in: | J. Energy; (United States) 1981-09, Vol.5 (5), p.308-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combined convection-gas radiation, two-zone flow model is formulated for study of the heat transfer characteristics of MHD radiant boilers. The radiative contributions of carbon dioxide, water vapor, potassium atoms, and slag particles are included in the formulation, and are determined by solving the radiation transport equation using the P/sub 1/ approximation. The scattering and absorption cross section of slag particles are calculated from Mie theory. The model is used to analyze the scale-up of heat transfer in radiant boilers with refractory thickness, wall emissivity, and boiler size, under conditions of a gas composition and slag particle spectrum typical of coal-fired MHD combustion. A design procedure is suggested for sizing radiant boilers so as to achieve required heat extraction rate and to provide a flow residence time that is adequate for decomposition of NO/sub x/ to acceptable levels. |
---|---|
ISSN: | 0146-0412 1555-5917 |
DOI: | 10.2514/3.48037 |