Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2021-01, Vol.59 (1), p.276-281
Hauptverfasser: Liu, Dongxu, Sun, Lizhi, Miller, Timothy C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 1
container_start_page 276
container_title AIAA journal
container_volume 59
creator Liu, Dongxu
Sun, Lizhi
Miller, Timothy C
description
doi_str_mv 10.2514/1.J059600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J059600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474941205</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-b5b8dbf0cff0c4188001721b9a4cc5bed04c787c6b7aae87984f7c8c9fab34453</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKsL_0FAEFxMTWaSJrOUTn1RH1gL7kKSSUramtRkivjvnWEKLlxcLof7ce7hAHCO0SinmFzj0SOi5RihAzDAtCiygtOPQzBACOEME5ofg5OUVq3KGccD8FoZa3QDKyeXPiSXoPNwHjauhm9Br00Dn0ITYoKL5PwSzo1PnZK-hpUxWzgzMvru8mya7xDX6RQcWblJ5my_h2BxO32f3Gezl7uHyc0skwUZN5miitfKIm3bIZjzNhHLsSol0ZoqUyOiGWd6rJiUhrOSE8s016WVqiCEFkNw0ftuY_jamdSIVdhF374UOWGkJDhHHXXVUzqGlKKxYhvdp4w_AiPRFSaw2BfWspc9K52Uf27_wV-DfWiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474941205</pqid></control><display><type>article</type><title>Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks</title><source>Alma/SFX Local Collection</source><creator>Liu, Dongxu ; Sun, Lizhi ; Miller, Timothy C</creator><creatorcontrib>Liu, Dongxu ; Sun, Lizhi ; Miller, Timothy C</creatorcontrib><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059600</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Deep learning ; Defects ; Environmental engineering ; Finite element analysis ; Machine learning ; Rocket engines ; Rockets ; Sensors ; Simulation ; Solid propellant rocket engines ; Stress concentration ; Thermal cycling</subject><ispartof>AIAA journal, 2021-01, Vol.59 (1), p.276-281</ispartof><rights>Copyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-b5b8dbf0cff0c4188001721b9a4cc5bed04c787c6b7aae87984f7c8c9fab34453</citedby><cites>FETCH-LOGICAL-a346t-b5b8dbf0cff0c4188001721b9a4cc5bed04c787c6b7aae87984f7c8c9fab34453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Dongxu</creatorcontrib><creatorcontrib>Sun, Lizhi</creatorcontrib><creatorcontrib>Miller, Timothy C</creatorcontrib><title>Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks</title><title>AIAA journal</title><subject>Deep learning</subject><subject>Defects</subject><subject>Environmental engineering</subject><subject>Finite element analysis</subject><subject>Machine learning</subject><subject>Rocket engines</subject><subject>Rockets</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Solid propellant rocket engines</subject><subject>Stress concentration</subject><subject>Thermal cycling</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWKsL_0FAEFxMTWaSJrOUTn1RH1gL7kKSSUramtRkivjvnWEKLlxcLof7ce7hAHCO0SinmFzj0SOi5RihAzDAtCiygtOPQzBACOEME5ofg5OUVq3KGccD8FoZa3QDKyeXPiSXoPNwHjauhm9Br00Dn0ITYoKL5PwSzo1PnZK-hpUxWzgzMvru8mya7xDX6RQcWblJ5my_h2BxO32f3Gezl7uHyc0skwUZN5miitfKIm3bIZjzNhHLsSol0ZoqUyOiGWd6rJiUhrOSE8s016WVqiCEFkNw0ftuY_jamdSIVdhF374UOWGkJDhHHXXVUzqGlKKxYhvdp4w_AiPRFSaw2BfWspc9K52Uf27_wV-DfWiE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Dongxu</creator><creator>Sun, Lizhi</creator><creator>Miller, Timothy C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks</title><author>Liu, Dongxu ; Sun, Lizhi ; Miller, Timothy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-b5b8dbf0cff0c4188001721b9a4cc5bed04c787c6b7aae87984f7c8c9fab34453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Defects</topic><topic>Environmental engineering</topic><topic>Finite element analysis</topic><topic>Machine learning</topic><topic>Rocket engines</topic><topic>Rockets</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Solid propellant rocket engines</topic><topic>Stress concentration</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dongxu</creatorcontrib><creatorcontrib>Sun, Lizhi</creatorcontrib><creatorcontrib>Miller, Timothy C</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dongxu</au><au>Sun, Lizhi</au><au>Miller, Timothy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks</atitle><jtitle>AIAA journal</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>276</spage><epage>281</epage><pages>276-281</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059600</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2021-01, Vol.59 (1), p.276-281
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J059600
source Alma/SFX Local Collection
subjects Deep learning
Defects
Environmental engineering
Finite element analysis
Machine learning
Rocket engines
Rockets
Sensors
Simulation
Solid propellant rocket engines
Stress concentration
Thermal cycling
title Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Diagnosis%20in%20Solid%20Rocket%20Motors%20Using%20Sensors%20and%20Deep%20Learning%20Networks&rft.jtitle=AIAA%20journal&rft.au=Liu,%20Dongxu&rft.date=2021-01-01&rft.volume=59&rft.issue=1&rft.spage=276&rft.epage=281&rft.pages=276-281&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059600&rft_dat=%3Cproquest_cross%3E2474941205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474941205&rft_id=info:pmid/&rfr_iscdi=true