Effect of Tripping on Hypersonic Turbulent Boundary-Layer Statistics
The effect of varying three-dimensional, cylindrical post-type trip size on the mean and turbulent velocity profiles of a Mach 7.6 turbulent boundary layer is examined using particle image velocimetry. It is shown that the effect of under- and overtripping is to amplify the wake component of the mea...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2017-09, Vol.55 (9), p.3051-3058 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of varying three-dimensional, cylindrical post-type trip size on the mean and turbulent velocity profiles of a Mach 7.6 turbulent boundary layer is examined using particle image velocimetry. It is shown that the effect of under- and overtripping is to amplify the wake component of the mean velocity profile and outer-layer turbulence intensity, confirming trends from incompressible flow. Such results indicate that overly aggressive tripping introduces artificial large-scale turbulence that requires longer downstream distances to decay. For the current experiment, adequate tripping was obtained for trip sizes between 1.7 and 2.3 times the laminar boundary-layer displacement thickness at the trip, δtr*, with the optimum size approximately 2.3 δtr*. The wake strength for the optimally tripped cases followed the correlation of Fernholz and Finley (AGARDograph 253, Neuilly sur Seine, France, 1980) at the same Reynolds number, providing a good indicator for under- or overtripping. These results confirm that compressible boundary layers mimic incompressible trends but require larger trip sizes and have increased sensitivity, making a boundary layer free from initial conditions harder to achieve. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/1.J055471 |