Design of Hybrid Airfoils for Icing Tunnel Tests Based on Reduced-Order Modeling Methods
A hybrid airfoil is a scaled model for generating a full-scale ice shape for icing wind tunnel tests. This is possible by matching full-scale properties such as the distributions of collection efficiency and heat transfer coefficient. Previous studies have used indirect methods using full-scale stag...
Gespeichert in:
Veröffentlicht in: | Journal of aircraft 2022-07, Vol.59 (4), p.847-860 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hybrid airfoil is a scaled model for generating a full-scale ice shape for icing wind tunnel tests. This is possible by matching full-scale properties such as the distributions of collection efficiency and heat transfer coefficient. Previous studies have used indirect methods using full-scale stagnation point location or tangent droplet trajectories. Therefore, these methods can cause a discrepancy between the full-scale and hybrid airfoil ice shapes under glaze ice conditions. To cope with the issue, this paper proposes a new approach to match the distributions of the full-scale collection efficiency and heat transfer coefficient on the leading edge, using a viscous turbulent computational fluid dynamics icing simulation. For computational efficiency, reduced-order modeling based optimization was used to match the distributions. The optimization process was applied to the glaze ice condition with a high liquid water content and temperature. The results indicate that matching the distribution of the heat transfer coefficient is recommended to minimize the error between full-scale and hybrid airfoil ice shapes for the glaze ice condition. Finally, a hybrid airfoil flap geometry, which can be applied to various angles of attack, was designed using the optimization design process. |
---|---|
ISSN: | 1533-3868 0021-8669 1533-3868 |
DOI: | 10.2514/1.C036435 |