A new learning rate based on Andrei method for training feed-forward artificial neural networks

In this paper we developed a new method for computing learning rate for Back-propagation algorithm to train a feed-forward neural networks. Our idea is based on the approximating the inverse Hessian matrix for the error function originally suggested by Andrie. Experimental  results show that the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tikrit Journal of Pure Science 2023-01, Vol.22 (2), p.109-112
Hauptverfasser: Khalil K. Abbo, Hassan H. Abrahim, Firdos A. Abrahim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we developed a new method for computing learning rate for Back-propagation algorithm to train a feed-forward neural networks. Our idea is based on the approximating the inverse Hessian matrix for the error function originally suggested by Andrie. Experimental  results show that the proposed method considerably improve the convergence rate  of the  Back-propagation algorithm for the chosen test problem.
ISSN:1813-1662
2415-1726
DOI:10.25130/tjps.v22i2.635