A DEEP DIVE INTO THE BASICS OF DEEP LEARNING
Deep learning is a type of machine learning (ML) that is growing in importance in the medical field. It can often perform better than traditional ML models on different metrics, and it can handle non-linear problems due to activation functions. Activation functions are different non-linear functions...
Gespeichert in:
Veröffentlicht in: | Праці Наукового товариства імені Шевченка. Медичні науки 2021-12, Vol.65 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep learning is a type of machine learning (ML) that is growing in importance in the medical field. It can often perform better than traditional ML models on different metrics, and it can handle non-linear problems due to activation functions. Activation functions are different non-linear functions that are used to restrict the values propagated to an interval. In deep learning, information propagates forward, passing through different layers of weights and activation functions, before reaching the final layer. Then a cost function is evaluated and propagated back through the network to adjust weights. A convolutional neural network (CNN) is a form of deep learning that is used primarily in imaging. CNNs perform significantly well with grid-like inputs because they learn shapes well. CNNs compute dot products between layers and kernels in a convolutional layer, prior to pooling, which outputs summary statistics. CNNs are better than trivial neural networks for imaging due to a number of reasons, like sparse interaction and equivariance of translation |
---|---|
ISSN: | 2708-8634 2708-8642 |
DOI: | 10.25040/ntsh2021.02.23 |