Green-Solvent Processed Green-Light Wavelength-Selective Organic Solar Cells Towards Agrivoltaics
Green-light wavelength-selective organic solar cells (GLWS-OSCs) utilize green-light for energy conversion and transmitted red and blue light for crop growth, potentially addressing key challenges for the energy supply in the greenhouses. Towards scaling up GLWS-OSCs via environmentally friendly pro...
Gespeichert in:
Veröffentlicht in: | Journal of Photopolymer Science and Technology 2024/06/25, Vol.37(2), pp.191-195 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Green-light wavelength-selective organic solar cells (GLWS-OSCs) utilize green-light for energy conversion and transmitted red and blue light for crop growth, potentially addressing key challenges for the energy supply in the greenhouses. Towards scaling up GLWS-OSCs via environmentally friendly process, fabrication the active layer using non-halogenated solvent process is essential. Here, we investigated the combination of poly(3-hexylthiophene) (P3HT) as a donor with nonfullerene acceptors (FBR and FBRCN) to fabricate o-xylene-processed GLWS-OSCs. Absorption measurements of FBR and FBRCN reveal the high molar extinction coefficient and strong absorption bands in the green-light wavelength region of 500-600 nm. Due to the appropriate matching of the frontier molecular orbital energy levels of FBR and FBRCN with P3HT, the P3HT:FBR and P3HT:FBRCN films showed high green-light wavelength-selective factors as well as reasonable power conversion efficiencies in the green-light region in OSCs. Photosynthetic rate measurements using strawberry leaves demonstrated that the photosynthetic rate through the transmitted light of the P3HT:FBRCN film is higher than that of the P3HT:FBR film. These results demonstrate that development of nonfullerene acceptors applicable to green-solvent process is important research direction for realizing GLWS-OSCs in new greenhouse agrivoltaics. |
---|---|
ISSN: | 0914-9244 1349-6336 |
DOI: | 10.2494/photopolymer.37.191 |