On The Geometric Determination of Extensions of Non-Archimedean Absolute Values
Let | | be a discrete non-archimedean absolute value of a field with valuation ring O, maximal ideal and residue field F = . Let be a simple finite extension of generated by a root of a monic irreducible polynomial ∈ ]. Assume that in F[ ] for some monic polynomial ∈ ] whose reduction modulo is irre...
Gespeichert in:
Veröffentlicht in: | Tatra Mountains Mathematical Publications 2023-02, Vol.83 (1), p.87-102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let | | be a discrete non-archimedean absolute value of a field
with valuation ring O, maximal ideal
and residue field F =
. Let
be a simple finite extension of
generated by a root
of a monic irreducible polynomial
∈
]. Assume that
in F[
] for some monic polynomial
∈
] whose reduction modulo
is irreducible, the
-Newton polygon
has a single side of negative slope λ, and the residual polynomial
)(
) has no multiple factors in F
]. In this paper, we describe all absolute values of
extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results. |
---|---|
ISSN: | 1338-9750 1338-9750 |
DOI: | 10.2478/tmmp-2023-0007 |