On The Geometric Determination of Extensions of Non-Archimedean Absolute Values

Let | | be a discrete non-archimedean absolute value of a field with valuation ring O, maximal ideal and residue field F = . Let be a simple finite extension of generated by a root of a monic irreducible polynomial ∈ ]. Assume that in F[ ] for some monic polynomial ∈ ] whose reduction modulo is irre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tatra Mountains Mathematical Publications 2023-02, Vol.83 (1), p.87-102
Hauptverfasser: Faris, Mohamed, El Fadil, Lhoussain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let | | be a discrete non-archimedean absolute value of a field with valuation ring O, maximal ideal and residue field F = . Let be a simple finite extension of generated by a root of a monic irreducible polynomial ∈ ]. Assume that in F[ ] for some monic polynomial ∈ ] whose reduction modulo is irreducible, the -Newton polygon has a single side of negative slope λ, and the residual polynomial )( ) has no multiple factors in F ]. In this paper, we describe all absolute values of extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.
ISSN:1338-9750
1338-9750
DOI:10.2478/tmmp-2023-0007