Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality

An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tatra Mountains mathematical publications 2013-04, Vol.54 (1), p.1-18
Hauptverfasser: Akça, Haydar, Covachev, Valéry, Covacheva, Zlatinka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Tatra Mountains mathematical publications
container_volume 54
creator Akça, Haydar
Covachev, Valéry
Covacheva, Zlatinka
description An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given.
doi_str_mv 10.2478/tmmp-2013-0001
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_tmmp_2013_0001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_tmmp_2013_00015411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-f0e1c990652a5da13442fe42ff556fc200fded5ba562e7e18e02f84540ca1cb03</originalsourceid><addsrcrecordid>eNp1UMtOwzAQ9AEkqtIrZ_-Ai-3EacoNtaWtVAHidY2cZF1ckrjYTqtc-Ru-gx_DUblyWM1otbM7OwhdMTrm8SS99nW9J5yyiFBK2RkaMM4oidhUXKCRc7vQpVE6STgboK91vbfmACV-9jLXlfYdXjiva-nBYWUsDgNt5fQB8Bwq2eEnkIXXpiFzrVTrAsMz8w4NWVrjXA52i--htbIK4I_Gfjj8piVeSVt25NHoppD25xuvG_hsZX_vEp0rWTkY_eEQvd4tXmYrsnlYrme3G1JwJjxRFFgxndJEcClKyaI45gpCKSESVXBKVQmlyKVIOEyApUC5SmMR00KyIqfREI1Pe4veqAWV7W3403YZo1kfXNYHl_XBZX1wQXBzEhxl5cGWsLVtF0i2M61tgtV_hCJmLPoF9ad61w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Akça, Haydar ; Covachev, Valéry ; Covacheva, Zlatinka</creator><creatorcontrib>Akça, Haydar ; Covachev, Valéry ; Covacheva, Zlatinka</creatorcontrib><description>An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given.</description><identifier>ISSN: 1210-3195</identifier><identifier>DOI: 10.2478/tmmp-2013-0001</identifier><language>eng</language><publisher>Versita</publisher><subject>Cohen-Grossberg neural networks ; Hardy-Poincaré inequalit ; impulses ; reaction-diffusion ; S-type delays</subject><ispartof>Tatra Mountains mathematical publications, 2013-04, Vol.54 (1), p.1-18</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c215t-f0e1c990652a5da13442fe42ff556fc200fded5ba562e7e18e02f84540ca1cb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Akça, Haydar</creatorcontrib><creatorcontrib>Covachev, Valéry</creatorcontrib><creatorcontrib>Covacheva, Zlatinka</creatorcontrib><title>Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality</title><title>Tatra Mountains mathematical publications</title><description>An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given.</description><subject>Cohen-Grossberg neural networks</subject><subject>Hardy-Poincaré inequalit</subject><subject>impulses</subject><subject>reaction-diffusion</subject><subject>S-type delays</subject><issn>1210-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQ9AEkqtIrZ_-Ai-3EacoNtaWtVAHidY2cZF1ckrjYTqtc-Ru-gx_DUblyWM1otbM7OwhdMTrm8SS99nW9J5yyiFBK2RkaMM4oidhUXKCRc7vQpVE6STgboK91vbfmACV-9jLXlfYdXjiva-nBYWUsDgNt5fQB8Bwq2eEnkIXXpiFzrVTrAsMz8w4NWVrjXA52i--htbIK4I_Gfjj8piVeSVt25NHoppD25xuvG_hsZX_vEp0rWTkY_eEQvd4tXmYrsnlYrme3G1JwJjxRFFgxndJEcClKyaI45gpCKSESVXBKVQmlyKVIOEyApUC5SmMR00KyIqfREI1Pe4veqAWV7W3403YZo1kfXNYHl_XBZX1wQXBzEhxl5cGWsLVtF0i2M61tgtV_hCJmLPoF9ad61w</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Akça, Haydar</creator><creator>Covachev, Valéry</creator><creator>Covacheva, Zlatinka</creator><general>Versita</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality</title><author>Akça, Haydar ; Covachev, Valéry ; Covacheva, Zlatinka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-f0e1c990652a5da13442fe42ff556fc200fded5ba562e7e18e02f84540ca1cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cohen-Grossberg neural networks</topic><topic>Hardy-Poincaré inequalit</topic><topic>impulses</topic><topic>reaction-diffusion</topic><topic>S-type delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akça, Haydar</creatorcontrib><creatorcontrib>Covachev, Valéry</creatorcontrib><creatorcontrib>Covacheva, Zlatinka</creatorcontrib><collection>CrossRef</collection><jtitle>Tatra Mountains mathematical publications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akça, Haydar</au><au>Covachev, Valéry</au><au>Covacheva, Zlatinka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality</atitle><jtitle>Tatra Mountains mathematical publications</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>54</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1210-3195</issn><abstract>An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given.</abstract><pub>Versita</pub><doi>10.2478/tmmp-2013-0001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1210-3195
ispartof Tatra Mountains mathematical publications, 2013-04, Vol.54 (1), p.1-18
issn 1210-3195
language eng
recordid cdi_crossref_primary_10_2478_tmmp_2013_0001
source Free E-Journal (出版社公開部分のみ)
subjects Cohen-Grossberg neural networks
Hardy-Poincaré inequalit
impulses
reaction-diffusion
S-type delays
title Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Stability%20Estimates%20for%20Impulsive%20Delay%20Reaction-Diffusion%20Cohen-Grossberg%20Neural%20Networks%20Via%20Hardy-Poincar%C3%A9%20Inequality&rft.jtitle=Tatra%20Mountains%20mathematical%20publications&rft.au=Ak%C3%A7a,%20Haydar&rft.date=2013-04-01&rft.volume=54&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1210-3195&rft_id=info:doi/10.2478/tmmp-2013-0001&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_tmmp_2013_00015411%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true