Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality

An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tatra Mountains mathematical publications 2013-04, Vol.54 (1), p.1-18
Hauptverfasser: Akça, Haydar, Covachev, Valéry, Covacheva, Zlatinka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given.
ISSN:1210-3195
DOI:10.2478/tmmp-2013-0001