Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality
An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in t...
Gespeichert in:
Veröffentlicht in: | Tatra Mountains mathematical publications 2013-04, Vol.54 (1), p.1-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained. Examples are given. |
---|---|
ISSN: | 1210-3195 |
DOI: | 10.2478/tmmp-2013-0001 |