Application of HDMR method to reliability assessment of a single pile subjected to lateral load

The paper presents an application of High Dimensional Model Representation (HDMR) to reliability assessment of a single pile subjected to lateral load. The purpose is to compare HDMR with some classical method based on response surface technique. First 3D numerical model of the problem for finite el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia geotechnica et mechanica 2012-10, Vol.34 (3), p.37-51
Hauptverfasser: Bauer, Jerzy, Kozubal, Janusz, Puła, Wojciech, Wyjadłowski, Marek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents an application of High Dimensional Model Representation (HDMR) to reliability assessment of a single pile subjected to lateral load. The purpose is to compare HDMR with some classical method based on response surface technique. First 3D numerical model of the problem for finite elements computations in the ABAQUS STANDARD program has been presented. The soil model is assumed to be linear elastic. However, contacts between the sidewall and the foundation of the pile and the soil are modelled as Coulomb one with friction and cohesion. Next the Response Surface Method is briefly reviewed in conjunction with reliability approach. Then the High Dimensional Model Representation approach is presented. In our approach the HDMR algorithm is based on polynomial of the second degree. Finally the numerical studies have been carried out. The first series of computations demonstrate the efficiency of HDMR in comparison to neural network approach. The second series allows comparison of reliability indices resulting from three different approaches, namely neural network response surface, first-order HDMR and second-order HDMR. It has been observed that for increasing values of the length of the pile reliability indices reach similar values regardless of the method response surface applied.
ISSN:0137-6365
DOI:10.2478/sgm031203