On a fractional Zener elastic wave equation
This survey concerns a causal elastic wave equation which implies frequency power-law attenuation. The wave equation can be derived from a fractional Zener stress-strain relation plus linearized conservation of mass and momentum. A connection between this four-parameter fractional wave equation and...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2013-03, Vol.16 (1), p.26-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This survey concerns a causal elastic wave equation which implies frequency power-law attenuation. The wave equation can be derived from a fractional Zener stress-strain relation plus linearized conservation of mass and momentum. A connection between this four-parameter fractional wave equation and a physically well established multiple relaxation acoustical wave equation is reviewed. The fractional Zener wave equation implies three distinct attenuation power-law regimes and a continuous distribution of compressibility contributions which also has power-law regimes. Furthermore it is underlined that these wave equation considerations are tightly connected to the representation of the fractional Zener stress-strain relation, which includes the
spring-pot
viscoelastic element, and by a Maxwell-Wiechert model of conventional springs and dashpots. A purpose of the paper is to make available recently published results on fractional calculus modeling in the field of acoustics and elastography, with special focus on medical applications. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.2478/s13540-013-0003-1 |