Pressure dependence of the band gap energy for dilute nitride and antimony GaN x Sb y As 1−x−y

Dilute nitride and antimony GaNAsSb alloy can be considered as an alloy formed by adding N and Sb atoms into the host material GaAs. Under this condition, its band gap energy depending on pressure can be divided into two regions. In the low pressure range, the band gap energy is due to two factors....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science--Poland 2020-06, Vol.38 (2), p.248-252
Hauptverfasser: Zhao, Chuan-Zhen, Ren, He-Yu, Sun, Xiao-Dong, Wang, Sha-Sha, Lu, Ke-Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dilute nitride and antimony GaNAsSb alloy can be considered as an alloy formed by adding N and Sb atoms into the host material GaAs. Under this condition, its band gap energy depending on pressure can be divided into two regions. In the low pressure range, the band gap energy is due to two factors. One is the coupling interaction between the N level and the Γ conduction band minimum (CBM) of GaAs. The other one is the coupling interaction between the Sb level and the Γ valence band maximum (VBM) of GaAs. In the high pressure range, the band gap energy depends also on two factors. One is the coupling interaction between the N level and the X CBM of GaAs. The other one is the coupling interaction between the Sb level and the Γ VBM of GaAs. In addition, it has been found that the energy difference between the Γ CBM and the X CBM in GaNAsSb is larger than that in GaAs. It is due to two factors. One is the coupling interaction between the N level and the Γ CBM of GaAs. The other is the coupling interaction between the N level and the X CBM of GaAs.
ISSN:2083-134X
2083-134X
DOI:10.2478/msp-2020-0028