Estimation Methods for a Flexible INAR(1) COM-Poisson Time Series Model

Time series of counts occur in many real-life situations where they exhibit various forms of dispersion. To facilitate the modeling of such time series, this paper introduces a flexible first-order integer-valued non-stationary autoregressive (INAR(1)) process where the innovation terms follow a Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics, statistics and informatics statistics and informatics, 2018-05, Vol.14 (1), p.57-82
Hauptverfasser: Sunecher, Y., Khan, N. Mamode, Jowaheer, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time series of counts occur in many real-life situations where they exhibit various forms of dispersion. To facilitate the modeling of such time series, this paper introduces a flexible first-order integer-valued non-stationary autoregressive (INAR(1)) process where the innovation terms follow a Conway-Maxwell Poisson distribution (COM-Poisson). To estimate the unknown parameters in this model, different estimation approaches based on likelihood and quasi-likelihood formulations are considered. From simulation experiments and a real-life data application, the Generalized Quasi-Likelihood (GQL) approach yields estimates with lower bias than the other estimation approaches.
ISSN:1336-9180
1339-0015
DOI:10.2478/jamsi-2018-0005