Estimation Methods for a Flexible INAR(1) COM-Poisson Time Series Model
Time series of counts occur in many real-life situations where they exhibit various forms of dispersion. To facilitate the modeling of such time series, this paper introduces a flexible first-order integer-valued non-stationary autoregressive (INAR(1)) process where the innovation terms follow a Con...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics, statistics and informatics statistics and informatics, 2018-05, Vol.14 (1), p.57-82 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time series of counts occur in many real-life situations where they exhibit various forms of dispersion. To facilitate the modeling of such time series, this paper introduces a flexible first-order integer-valued non-stationary autoregressive (INAR(1)) process where the innovation terms follow a Conway-Maxwell Poisson distribution (COM-Poisson). To estimate the unknown parameters in this model, different estimation approaches based on likelihood and quasi-likelihood formulations are considered. From simulation experiments and a real-life data application, the Generalized Quasi-Likelihood (GQL) approach yields estimates with lower bias than the other estimation approaches. |
---|---|
ISSN: | 1336-9180 1339-0015 |
DOI: | 10.2478/jamsi-2018-0005 |