Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm
In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural...
Gespeichert in:
Veröffentlicht in: | Formalized mathematics 2019-04, Vol.27 (1), p.87-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers
,
,
, “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo
) :=
mod
and for any integers
,
, “Euclidean algorithm” can calculate the non negative integer gcd(
). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7].
For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log
⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log
min(
). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems. |
---|---|
ISSN: | 1426-2630 1898-9934 |
DOI: | 10.2478/forma-2019-0009 |