Application of various approaches of multispectral and radar data fusion for modelling of aboveground forest biomass

Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the aboveground forest biomass (AGB) in this study. The RapidEye multispectral im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia forestalia Polonica. Series A, Forestry Forestry, 2023-06, Vol.65 (2), p.55-67
Hauptverfasser: Movchan, Dmytro, Bilous, Andrii, Yelistratova, Lesia, Apostolov, Alexander, Hodorovsky, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the aboveground forest biomass (AGB) in this study. The RapidEye multispectral image and the PALSAR radar image were used in research as sources of remote sensing data. Five models for estimating forest AGB were built and analysed using data from test area in Chernihiv region (Ukrainian Polissya). Correlation and min–max accuracy have been calculated for each model to measure the model performance. Among all the data fusion approaches used in the study, the high-pass filtering method has shown the greatest efficiency.
ISSN:2199-5907
2199-5907
DOI:10.2478/ffp-2023-0006