Hypercomplex Quaternions and Higher-Order Analysis of Spatial Kinematic Chains
This paper introduces a novel computational method for analyzing the higher-order acceleration field of spatial kinematics chains. The method is based on vector and quaternionic calculus, as well as dual and multidual algebra. A closed-form coordinate-free solution generated by the morphism between...
Gespeichert in:
Veröffentlicht in: | BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică 2023-12, Vol.69 (1), p.21-34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a novel computational method for analyzing the higher-order acceleration field of spatial kinematics chains. The method is based on vector and quaternionic calculus, as well as dual and multidual algebra. A closed-form coordinate-free solution generated by the morphism between the Lie group of rigid body displacements and the unit multidual quaternions is presented. Presented solution is used for higher-order kinematics investigation of lower-pair serial chains. Additionally, a general method for studying the vector field of arbitrary higher-order accelerations is discribed. The method utilizes the “automatic differentiation” feature of multidual and hyper-multidual functions to obtain the higher-order derivative of a rigid body pose without need in further differentiation of the body pose regarding time. Also is proved that all information regarding the properties of the distribution of higher-order accelerations is contained in the specified unit hyper-multidual quaternion. |
---|---|
ISSN: | 2537-4990 2537-4990 |
DOI: | 10.2478/bipmf-2023-0002 |