mathcal{L}$-STABLE RINGS
If $\mathcal{L}(R)$ is a set of left ideals defined in any ring $R,$ we say that $R$ is $\mathcal{L}$-stable if it has stable range 1 relative to the set $\mathcal{L}(R)$. We explore $\mathcal{L}$-stability in general, characterize when it passes to related classes of rings, and explore which classe...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2021-01, Vol.29 (29), p.63-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If $\mathcal{L}(R)$ is a set of left ideals defined in
any ring $R,$ we say that $R$ is $\mathcal{L}$-stable if it has stable range
1 relative to the set $\mathcal{L}(R)$. We explore $\mathcal{L}$-stability
in general, characterize when it passes to related classes of rings, and
explore which classes of rings are $\mathcal{L}$-stable for some$\mathcal{\ L}.$ Some well known examples of $\mathcal{L}$-stable rings are presented,
and we show that the Dedekind finite rings are $\mathcal{L}$-stable for a
suitable $\mathcal{L}$. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.852012 |