The ratio-covariety of numerical semigroups having maximal embedding dimension with fixed multiplicity and Frobenius number
In this paper we will show that $\MED(F,m)=\{S\mid S \mbox{ is a numeri-}\\ \mbox{cal semigroup with maximal embedding dimension, Frobenius number $F$ and }\\ \mbox{multiplicity }m\}$ is a ratio-covariety. As a consequence, we present two algorithms: one that computes $\MED(F,m)$ and another one tha...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we will show that $\MED(F,m)=\{S\mid S \mbox{ is a numeri-}\\ \mbox{cal semigroup with maximal embedding dimension, Frobenius number $F$ and }\\ \mbox{multiplicity }m\}$ is a ratio-covariety. As a consequence, we present two algorithms: one that computes $\MED(F,m)$ and another one that calculates the elements of $\MED(F,m)$ with a given genus. If $X\subseteq S\backslash (\langle m \rangle \cup \{F+1,\rightarrow\})$ for some $S\in \MED(F,m)$, then there exists the smallest element of $\MED(F,m)$ containing $X$. This element will be denoted by $\MED(F,m)[X]$ and we will say that $X$ one of its $\MED(F,m)$-system of generators. We will prove that every element $S$ of $\MED(F,m)$ has a unique minimal $\MED(F,m)$-system of generators and it will be denoted by $\MED(F,m)\msg(S).$ The cardinality of $\MED(F,m)\msg(S)$, will be called $\MED(F,m)$-$\rank$ of $S.$ We will also see in this work, how all the elements of $\MED(F,m)$ with a fixed $\MED(F,m)$-$\rank$ are. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.1575996 |