Computational methods for t-spread monomial ideals
Let $K$ be a field and $S=K[x_1,\ldots,x_n]$ a standard polynomial ring over $K$. In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$. Some techn...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2024-01, Vol.35 (35), p.186-216 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $K$ be a field and $S=K[x_1,\ldots,x_n]$ a standard polynomial ring over $K$.
In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$.
Some technical tools allowing to compute the cardinality of $t$-spread strongly stable sets avoiding their construction are also presented.
Such functions are also implemented in a \emph{Macaulay2} package, \texttt{TSpreadIdeals}, to ease the computation of well-known results about algebraic invariants for $t$-spread ideals. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.1402973 |