On the capitulation problem of some pure metacyclic fields of degree 20 II
Let $n$ be a $5^{th}$ power-free natural number and $k_0\,=\,\mathbb{Q}(\zeta_5)$ be the cyclotomic field generated by a primitive $5^{th}$ root of unity $\zeta_5$. Then $k\,=\,\mathbb{Q}(\sqrt[5]{n},\zeta_5)$ is a pure metacyclic field of absolute degree $20$. In the case that $k$ possesses a $5$-c...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2024-01, Vol.35 (35), p.20-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $n$ be a $5^{th}$ power-free natural number and $k_0\,=\,\mathbb{Q}(\zeta_5)$ be the cyclotomic field generated by a primitive $5^{th}$ root of unity $\zeta_5$. Then $k\,=\,\mathbb{Q}(\sqrt[5]{n},\zeta_5)$ is a pure metacyclic field of absolute degree $20$. In the case that $k$ possesses a $5$-class group $C_{k,5}$ of type $(5,5)$ and all the classes are ambiguous under the action of $Gal(k/k_0)$, the capitulation of $5$-ideal classes of $k$ in its unramified cyclic quintic extensions is determined. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.1388822 |