Graded S-Noetherian Modules

Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International electronic journal of algebra 2023-01, Vol.33 (33), p.87-108
Hauptverfasser: ANSARI, Ajim Uddin, SHARMA, B. K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded $S$-Noetherian modules in terms of $S$-Noetherian modules. For instance, a $G$-graded $A$-module $M$ is $G$-graded $S$-Noetherian if and only if $M$ is $S$-Noetherian, provided $G$ is finitely generated and $S$ is countable. Also, we generalize some results on $G$-graded Noetherian rings and modules to $G$-graded $S$-Noetherian rings and modules.
ISSN:1306-6048
1306-6048
DOI:10.24330/ieja.1229782