Graded S-Noetherian Modules
Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2023-01, Vol.33 (33), p.87-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded $S$-Noetherian modules in terms of $S$-Noetherian modules. For instance, a $G$-graded $A$-module $M$ is $G$-graded $S$-Noetherian if and only if $M$ is $S$-Noetherian, provided $G$ is finitely generated and $S$ is countable. Also, we generalize some results on $G$-graded Noetherian rings and modules to $G$-graded $S$-Noetherian rings and modules. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.1229782 |