Planar index and outerplanar index of zero-divisor graphs of commutative rings without identity

Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International electronic journal of algebra 2023-01, Vol.33 (33), p.18-33
Hauptverfasser: KALAIMURUGAN, G., VIGNESH, P., AFKHAMI, M., BARATI, Z.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity.
ISSN:1306-6048
1306-6048
DOI:10.24330/ieja.1152714