Planar index and outerplanar index of zero-divisor graphs of commutative rings without identity
Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper...
Gespeichert in:
Veröffentlicht in: | International electronic journal of algebra 2023-01, Vol.33 (33), p.18-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a commutative ring without identity. The zero-divisor graph of $R,$ denoted by $\Gamma(R)$ is a graph with vertex set $Z(R)\setminus \{0\}$ which is the set of all nonzero zero-divisor elements of $R,$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0.$ In this paper, we characterize the rings whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we establish the planar index, ring index and outerplanar index of the zero-divisor graphs of finite commutative rings without identity. |
---|---|
ISSN: | 1306-6048 1306-6048 |
DOI: | 10.24330/ieja.1152714 |